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An indirect electronic transition from the L point valence band to the T point valence band has been
previously observed in Bi nanowires oriented along the [0112] crystalline direction (used by Black er al. and
by Reppert ez al.) but not in [1120]-oriented nanowires (used by Cornelius ef al.) or in bulk bismuth. Here we
measure the Bi nanowire samples from each of these prior experimental studies on the same Fourier transform
infrared apparatus, confirming that the differences are indeed physical and are not associated with the experi-
mental setup. We develop an analytical model for the threshold energy of the indirect L to T point valence-band
transition that takes as parameters the nanowire diameter and crystalline orientation. Our model shows good
agreement with experimental results, and demonstrates that the nonparabolic nature of the L point bands is
essential for calculating the energy of this transition. Finally, we propose a mechanism based on symmetry
lowering to explain why this indirect transition is observed for [0112]-oriented but not for [1120]-oriented

nanowires.

DOI: 10.1103/PhysRevB.79.165117

I. INTRODUCTION

Due to the unique electronic properties of bismuth, Bi
nanowires provide an attractive low-dimensional system for
studying quantum confinement effects, and these nanowires
have therefore generated much interest for both optical and
thermoelectric applications. Two especially interesting fea-
tures of Bi nanowires are the nonparabolic nature of the elec-
tronic energy bands near the Fermi level and the large aniso-
tropy of the carrier pockets. As a result of these features, the
electronic properties of Bi nanowires depend strongly on
both crystalline orientation and nanowire diameter.

Black et al.! investigated a sharp and intense absorption
peak in Bi nanowires oriented along the [0112] crystalline
direction, a feature not observed in bulk bismuth. They found
the energy of this absorption peak to be 965 and 1090 cm™!
in their samples with average wire diameters of 200 and
~45 nm, respectively (see Fig. 1). Black er al.! explained
this energy feature as an indirect transition from electronic
states in the L point valence band to unoccupied states above
the Fermi energy in the T point valence band. In this case,
the L and T point subbands both decrease in energy with
decreasing wire diameter but the L point subbands decrease
in energy faster than the T point subbands due to the lower
effective mass at the L points. Hence, the energy peak of this
indirect interband transition increases with decreasing diam-
eter but not as rapidly as would be expected of a direct in-
terband or intersubband transition. Although this indirect
transition (which we shall hence call the L-T transition) may
occur in bulk Bi, it is not easily observable because the op-
tical absorption in bulk Bi is dominated by the direct L point
transition and by free-carrier absorption processes. In their
paper, Black et al.! presented a numerical simulation of the
L-T transition, which demonstrated good agreement with
experimental results.

A further blueshift of this peak was reported for ~10 nm
Bi nanorods by Reppert et al. (see Fig. 2). Here the infrared
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band is clearly resolved into a main absorption peak centered
around 1393 cm™!, as well a second smaller peak at
1460 cm™!. This second peak is identified with an indirect
process in which the incident photon energy is used to create
a phonon spanning the L and T points in the Brillouin zone,
as well as a photon of energy of 1393 cm™! to excite an
electron from the L point valence band to the T point valence
band. An additional third absorption peak is seen as a weak
shoulder at 1355 cm™!, and is identified with the absorption
of a phonon spanning the L and T points, and the excitation
of an electron from the L to T points in the Brillouin zone.
This feature is expected to be weak due to the low probabil-
ity of having a 70 cm~! phonon thermally excited at 300 K.?

In Sec. II, we present a simple analytical model for the
threshold energy of the L-T transition that takes as param-
eters the wire diameter and crystalline orientation. Our
model agrees very well with the above experimental results
of Black et al.! and Reppert et al.,” and demonstrates that the
nonparabolic nature of the L point bands is essential for cal-
culating the energy of the L-T transition.

In another experiment, Cornelius et al* did not observe
the absorption peak near 1000 cm™' in their study of

[1120]-oriented Bi nanowires. Instead, their infrared spectra
of nanowires with diameters ranging from 30 to 200 nm
display an absorption peak that shifts from 2000 to
4000 cm~!, and is consistent with a direct L-L point elec-
tronic transition.> However, since the samples of Cornelius et
al.,* Reppert et al.,> and Black et al.! were all measured on
different FTIR setups, it is possible that these differing re-
sults could stem from differences in experimental setup. In
Sec. III, we measure samples from each of these three groups
on the same FTIR apparatus, confirming that these differ-
ences are indeed physical and are not associated with the
experimental setup.

We then propose a mechanism in Sec. IV to explain why

this L-T transition peak is observed in [0112]-oriented but
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FIG. 1. Room temperature absorption peaks of Black et al.’s
(Ref. 1) Bi nanowire samples (oriented in the [0112] crystalline

direction). The absorption « (arbitrary units) has been plotted as a
function of wave number, w.

not in [1120]-oriented nanowires. In our mechanism, the
symmetry lowering caused by the finite lattice in the direc-
tion perpendicular to the nanowire axis allows for coupling
between states which in the bulk are associated with different
points in the Brillouin zone. In particular, under certain con-
ditions one of the three L points can couple to the T point
through the nanowire boundary, and the L-T transition would
therefore no longer require a phonon for momentum conser-
vation. In order for this to occur, one part of the nanowire
boundary must be oriented in the proper direction to couple
one of the L points to the T point, and we show that this is

the case for [0112]-oriented but not [1120]-oriented Bi
nanowires.

II. THEORETICAL MODELING
A. L-T transition

In bulk Bi, electron carrier pockets are three ellipsoids
centered at the L points, and the hole carrier pocket is an
ellipsoid of revolution centered at the T point whose axes
coincide with the high-symmetry crystal axes (Fig. 3). Since
the Bi crystal has trigonal symmetry, there are three equiva-
lent L points and one T point. The constant energy hole el-
lipsoid at the T point may be characterized by the effective-
mass tensor at the valence-band edge, written in Cartesian
coordinates (where the x, y, and z coordinates correspond to
the binary, bisectrix, and trigonal axes, respectively):

m,, 0 0
0 m, 0 [ (1)

0 0 my,

Mh=

We have mj,,=m;, due to symmetry, and n,;>m,,, indi-
cating a large anisotropy in the T point hole Fermi surface.
At 0 K, the effective-mass components are mj, =m,,
=0.059 and m;;=0.634 (in units of the free-electron mass
mg).> The T point effective-mass values are not expected to
have a strong temperature dependence.6

The valence band at the T point is well approximated by a
parabolic dispersion relation:
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where Et  is the energy at the T point valence-band edge, m
is the free-electron mass, and M;l is the inverse of the T
point hole effective-mass tensor in Eq. (1).

The dispersion relations for the L point carriers are more
complicated. To begin with, the principal axes of the L point
ellipsoids are not aligned with the trigonal and bisectrix axes,
and the effective-mass tensor is therefore not diagonal in
Cartesian coordinates. The L point electron pocket shown in
Fig. 3 is characterized by its effective-mass tensor

M,=| 0 m), m,|. (3)

At 0 K, the effective-mass components are m,,
=0.00113, m,=0.26, m,;=0.00443, and m,,=0.0195.
The L point band structure, in contrast to that of the T point,
has a strong temperature dependence for temperatures above
80 K due to coupling between the nonparabolic L point va-
lence and conduction bands.®® As a result, the L point
effective-mass components have been found to vary with
temperature approximately according to the empirical
relation®

m*(0)
1-2.94 X 10737 +5.56 X 1077’

m*(T) = 4)
obtained from magnetoreflection studies.

For T=300 K, Eq. (4) yields m*(300)=5.951 X m*(0) so
the L point effective-mass components at room temperature
are taken to be m,,=0.00672, m,,=1.547, m;=0.02636,
and m,,,=0.116. The other two L point pockets are obtained
by 120° rotations of M, about the trigonal (z) axis.

As noted above, the L point valence and conduction bands
are very strongly coupled due to the small band gap between
them [E, =36 meV at 300 K (Ref. 6)], and a parabolic dis-
persion relation is therefore not appropriate. Instead, the L
point band structure is best described by the two-band Lax
model, which makes use of k- p perturbation theory.’

Taking the L point conduction-band edge as the zero
value of the energy, the Lax model gives the following non-
parabolic dispersion relations:

R E 20 .
EL(k)z——23L<li\/l+ k-M;‘-k), (5)

moE,1

where the + and — signs describe the dispersion relations of
the L point valence and conduction bands, respectively,
which are mirror images of each other due to their strong
coupling in bulk bismuth. We use this basic model to handle
the corresponding dispersion relations in the nanowires,
which maintain the same crystal structure as bulk bismuth,
with the same lattice constants, down to at least 7 nm in
diameter.'?

The electronic features of Bi nanowires differ from those
of bulk bismuth due to quantum confinement, which causes
the valence and conduction bands at the L and T points to
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FIG. 2. IR absorption spectrum taken by Reppert et al. (Ref. 2)
of the as-prepared ~10 nm Bi nanorods.

split into subbands. As the nanowire diameter decreases, the
lowest L point conduction subband increases in energy as the
highest valence subband correspondingly decreases in en-
ergy. This effectively increases the L point band gap, E,; (d),
which becomes a function of nanowire diameter d. At the
same time, the highest T point valence subband decreases in
energy, lowering the band overlap. For nanowires of diam-
eter ~20 nm (depending on wire orientation), the band over-
lap becomes zero at room temperature, and the semimetal-
semiconductor transition is reached.'!

In a nanowire, the subbands of parabolic E(k) bands (such
as the T point valence band) split apart in energy proportion-
ally to %%/ (m;dz), where m; is the in-plane effective mass of
the nanowire (for a given carrier pocket) and depends on
crystalline orientation. However, as we shall show in the next
section, the subbands of nonparabolic bands such as those at
the L point in Bi do not split apart in energy proportionally to
72/ (m,d?), and this first-order approximation becomes in-
creasingly inappropriate with decreasing nanowire diameter.

Here, we derive a formula for the threshold energy of the
L-T transition. For simplicity, we will find the energy from
the band edge of the highest L point valence subband to the
band edge of the highest T point valence subband. This is a
reasonably accurate approximation for the L-T transition
energy,' but a complete treatment of energies associated with
different subbands would require joint-density-of-states cal-
culations, as well as a more in-depth study of the coupling
and selection rules at the L and T points of the Brillouin
zone.

From the schematic view of the electronic band structure
of bulk Bi near the Fermi energy in Fig. 3, it can be seen that
the energy difference between the L and T point band edges
in bulk Bi can be expressed as E, +E,. The situation re-
mains the same in nanowires, except that the highest valence
subbands at both the L and T points decrease in energy due
to quantum confinement. We will call AE;(d) the energy
difference between the band edges at the L point of the va-
lence band in bulk Bi and at the highest L point valence
subband of a nanowire of diameter d. The corresponding
term at the T point will be AE(d). Hence, for the case of
nanowires we obtain the following formula for the threshold
energy of the L-T transition:
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FIG. 3. (a) The Brillouin zone of bismuth, showing the T point
hole pocket and the three L point electron pockets. (b) A schematic
of the bismuth band structure near the Fermi level, indicating the
direct band gap at the L point (E,; ) and at the T point (E,r), as well
as the band overlap E,, from the T point valence-band edge to the L
point conduction-band edge.

EL—T(d) = EgL + EO - AEL(d) + AET(d) . (6)

In the following sections we will further analyze Eq. (6),
and calculate the dependence of Ey 1(d) on crystalline orien-
tation.

B. Square wire model

We are now ready to introduce an analytical model for
calculating E; 1(d). Since E, and E, are constants, we can
focus on computing AE; (d) and AEr(d). In order to avoid
numerical simulation and to keep our model analytical, we
will treat the case of square nanowires instead of cylindrical
ones. To ensure the accuracy of our results, we align the
sides of the square wire with the directions of the two prin-
cipal effective-mass components in the plane normal to the
wire axis.

We perform calculations for square wires of side length d,
treating the nanowire as an infinite potential well. The square
wire model is easy to implement, and the infinite potential
assumption is generally quite accurate since the nanowires
we study are electrically isolated due to protective oxide
coatings, dielectric mismatches with the outside environ-
ment, etc.

Since electron motion in nanowires is restricted in direc-
tions normal to the wire axis, quantum confinement causes
the energies associated with the in-plane motion to be quan-
tized. For a nanowire with a given crystalline orientation, let
m}p be the average in-plane effective mass at the T point,
and m:’p be the average in-plane effective mass at the L point
(we will calculate these values shortly). Let z' be the direc-
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tion of the nanowire axis, and let x" and y' be two arbitrary
directions in the plane of the nanowire cross section which
are normal to each other. We will let the sides of the square
wires be oriented along the x’ and y’ directions. The vector k
in Egs. (2) and (3) will have components k., k,/, and k, in
the orthogonal coordinate system {x’, y’, z’}. Due to quan-
tum confinement in an infinite potential well, the values of
k. and k,» will be quantized:

nimT
er = kyr = 7 (7)

For the highest valence subband, as we are considering,
we have n=1. To find AE;(d), we use Eq. (2), noting that
k, =0 at the band edge:

AET(d) = ET(d) - ET,O
- kMR
2m0
ﬁ2
e (R, (8)

ES

2mT)pm0

Now, we can substitute Eq. (7) into Eq. (9):
s &
AET(d)=—*—(2;)=—*—2- )
2mT,pm0 4mT,pm0d

Similarly, we use Eq. (5) to obtain AE; (d) for the nonpa-
rabolic L point valence band:

E 2% R
AEL(d)=—§£<1—\/1+ k-M;‘-k)

mOEgL
E 1 n?
=Jk<1— 1+—*—2). (10)
2 EgL mL’pmod

The expressions AEr(d) and AE| (d) in Egs. (9) and (10)
can be inserted into Eq. (6), along with the bulk values E,
and E,, to find the transition energy Ey 1(d). We will now use
solid geometry to find the in-plane effective-mass values
m}';p and my , given a nanowire axis direction, leaving d as
the only variable in Eq. (6).

C. Calculating the in-plane effective mass

Recall that the L and T point carrier ellipsoids are char-
acterized (in Cartesian coordinates) by their respective band-
edge effective-mass tensors M, and M, given in Egs. (1) and
(3). Given a nanowire direction, we can use M, and M, to
calculate the average in-plane masses m;:,p and m;p, respec-
tively. For the sake of generality, we will refer to the
effective-mass tensor M, and the corresponding average in-
plane effective mass m;; for a given carrier pocket.

Following the reasoning in Ref. 11, for a carrier pocket
with effective-mass tensor M, the in-plane effective mass m;
of the nanowire can be accurately given as
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FIG. 4. (Color online) The intersection of an ellipsoid with a
plane is a two-dimensional ellipse. Given the carrier ellipsoid de-
scribed in Eq. (12), the half-axis lengths of the resulting ellipse are
Vm] and \m5 as shown in the figure.
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where m) and m} are the two principal effective-mass com-
ponents in the plane normal to the nanowire axis. A quick
calculation shows that this designation is equivalent to set-
ting the orientations x" and y’ of the square wire sides along
the directions of the two principal in-plane mass components
m) and mj.

Given a nanowire whose axis may be represented by the
vector [a,b,c] in Cartesian coordinates, the intersection of
the plane normal to the nanowire axis with the carrier ellip-
soid will be an ellipse, as shown in Fig. 4. The lengths of the

half axes of this ellipse will thus be exactly \e’% and V/m_;,
where m| and m; are the two principal effective-mass com-
ponents in the plane normal to the nanowire axis. Thus, by
Eq. (11) we must find the lengths of the half axes of this
ellipse in order to calculate m’.

The calculation of m; can be rephrased as a problem in
solid geometry: given an ellipse formed by the intersection
of an ellipsoid and a plane, which are defined, respectively,
by the equations:

X

[x y zlM ']y |=1, (12)
Z

ax+by+cz=0, (13)

where a, b, and ¢ are the Cartesian components of a vector
perpendicular to the plane (representing the nanowire axis),
we find the lengths of the semimajor and semiminor axes of
this ellipse.

We can solve this problem using the following procedure:

(1) Use Eq. (13) to find z(x,y) (z in terms of x and y).

(2) Choose new coordinates x’(x,y) and y'(x,y) that sat-
isfy the criterion x>+y?+z(x,y)?>=x"?+y’2. The equation d’
=x'2+y’? defines a distance metric on the plane given by Eq.
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TABLE 1. Values of the confined effective-mass components
my, m5, and the resulting values of m; for each carrier pocket (in
units of mg), calculated for nanowires oriented in the [0112]
direction.

Pocket T L(A) L(B) L(C)
mT 0.059 0.011 0.009 0.007
m; 0.143 0.138 0.036 0.031
m’ 0.0835 0.020 0.014 0.011

(13). Any point P on the plane can now be given by its
coordinates (x’,y’) instead of (x,y,z), and the square dis—
tance of P from the or1g1n can be written as d’=x'?+y’?
instead of d®>=x>+y>+7%.

(3) Find the inverse relations x(x’,y’) and y(x’,y’).

(4) Substitute z(x,y) from step (1) into Eq. (12), which
becomes an equation of x and y. Now, insert into this equa-
tion the relations x(x’,y’) and y(x’,y") from step (3) to ob-
tain an equation for the ellipse in {x’,y’} coordinates.

(5) The equation for this ellipse most likely will not be
diagonal in the {x’,y’} basis. It will have the form kx'?
+2kox"y" +ksy'?=1, for some constants k;, k,, and ks. This
equation can be elegantly written in matrix form as

Lk k| X _
R T

(6) Find the eigenvalues N\| and \, of this 2 X2 matrix.

The quantities \(1/X\;) and (1/X,) are the half-axis lengths
of the desired ellipse. Recalling that the half axes have

lengths \e"m*{ and \r%, we obtain our desired result:

1 1

= =, 15
N . (15)

%

*_ . —_—
my;= s My =

which we can insert into Eq. (11) to obtain m;.
This method is particularly robust because we can simply
insert the Cartesian coordinates [a,b,c] of any desired nano-
wire axis direction into Eq. (13), and proceed to calculate the
corresponding in-plane effective mass.
Table T lists the values of m), mj,, and the resulting m,
obtained by the above procedure for the T point and for each

of the three L points for wires oriented in the [0112] direc-
tion. We obtain the three L point in-plane effective masses
by inserting M,' into Eq. (12), and using the Cartesian
family of [0112] directions {[-0.774,0.223,0.593], [0.193,
~0.782,0.593], [0.580,0.558,0.593]} derived in Ref. 12 as
the components [a,b,c] in Eq. (13). To obtain the T point
in-plane effective mass my. > We insert M, !into Eq. (12), and
use the vector coordinates [—0.774,0.223,0.593] in Eq.
(13) 12

D. Results

Having found the in-plane effective masses at the T point
and at the three L points, we can now use them to obtain the
full expression for AE| (d), where we have inserted Egs. (9)
and (10) into Eq. (6):
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FIG. 5. (Color online) A plot of E; 1 vs 1/d” for the nonpara-
bolic model, with d ranging from 300 to 10 nm. The blue curve
(top) uses a value of mL =0.011, the green curve (middle) uses
my »=0.014, and the red curve (bottom) uses ;. »=0.020. The three
experimental data points (d=300, 45, and 10 nm) and their respec-
tive energy peaks are plotted as black circles, and they fit best for
m{ ,=0.011.

E; 1(d) = Egq +Ey— _2&

1w h?
X{1=1\/14+ —— o Rl oy
Egmy myd 4my jmod
(16)

One difficulty in implementing this model lies in the fact
that the bulk bismuth band parameters are not accurately
known at room temperature. The L point band gap and the
L-T band overlap have been estimated to be E, =36 meV
and E(y=98 meV, respectively, but since only one study
measures these values, it is not clear how accurate these
values are.® Since the value of E, is likely to be more ac-
curate than the value of E,, we will use the published value
of E, =36 meV, and we will find E, using our model.

There are three experimental data points available that
have been identified with the L-T transition, all for

[0112]-oriented nanowires. As mentioned in Sec. I, Black et
al." measured peaks of 965 (119.6 meV) and 1090 cm™!
(135.1 meV) for nanowires with diameters of 200 and 45
nm, respectively, while the ~10 nm nanowires of Reppert et
al.? had a large absorbance peak at 1393 cm™' (172.7 meV).

To obtain a value of the band overlap EO, we insert the

values E, =36 meV mT =0.0835, and mL =0.014 (the
middle value of mj p in Table I) into Eq. (16), for d
=200 nm. This gives us a value of Ey=82.5 meV, which we
shall now use in our calculations.

Note that the cross-sectional area of a cylindrical wire of
diameter d is smaller by a factor of 7/4 than the cross-
sectional area of a square wire with side length d. Therefore,
we have multiplied ¢ by /4 in Eq. (16) in order to generate
the plot in Fig. 5.

Let us now examine the parameters of our model in more
detail. In Fig. 5, we have plotted E; 1 vs 1/d” for each of the
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FIG. 6. (Color online) A plot of E; 1 vs 1/d” for the two models,
with d ranging from 300 to 10 nm. The dashed curve shows the
parabolic model of Eq. (18) while the solid curve shows the non-
parabolic model of Eq. (16). The three experimental data points
(d=300, 45, and 10 nm) and their respective energy peaks are plot-
ted as black circles. The value of m}i,p=0.011 was used throughout.

three in-plane L point masses in Table I. We have again
included the three experimental data points for reference, and
use the values £,=82.5 meV and £, =36 meV. We see that
our model agrees well with the experimental data. As we can
see, the energy of the transition has a strong dependence on
the value of m; .

Notice that the closest fit of our model with the experi-
mental points is observed when we use the L(C)-point in-
plane effective-mass value mi’sz.Oll. This is consistent
with the fact that the electron pocket with the smallest in-
plane effective mass will have the largest transport effective
mass m}k along the wire axis, and is therefore expected to
have a large joint density of states and to contribute the most
to optical absorption.

It is interesting to note that, below a certain nanowire
diameter, our model predicts that the highest T point subband
decreases in energy faster than the highest L point subband,
thus decreasing the energy of the L-T transition. The value of
this diameter depends on the in-plane effective masses mf,p
and mr .

In our model we have used the nonparabolic two-band
Lax model for the dispersion relations at the L point in bis-
muth. We shall now demonstrate that the Lax model is much
more appropriate than the parabolic model in describing the
L point band structure, as the first-order parabolic approxi-
mation gives highly inaccurate results in our model. To see
this, we expand AE| (d) in Eq. (10) to first order about k.
=0:

h2
AE; (d)=- . 17
L( ) 4mi’im0d2 ( )
Inserting Egs. (9) and (17) into Eq. (6), we obtain
h? h?
EL—T(d) = EgL + EO + (18)

* 2 gk 2"
dmy, jmod”  4my jmod

In Fig. 6, we have plotted the energies of the L-T transi-
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FIG. 7. (Color online) The diameter distribution of ~100 bis-
muth nanorods of Reppert et al. (Ref. 2).

tion vs 1/d? for the nonparabolic and the parabolic models,
respectively, given by Egs. (16) and (18), along with the
three experimental data points mentioned above. We have
used the values E;=82.5 meV, EgL=36 meV, m]*q’p=0.011,
and m;p=0.0835.

It can be seen from Fig. 6 that the nonparabolic Lax
model is far more appropriate than the parabolic model,
which predicts a linear E; 1 vs 1/d* relation. Interestingly,
the ~10 nm diameter nanorods of Reppert et al.> show the
L-T transition even though their diameters are expected to
fall below the semimetal-semiconductor (SM-SC) transition,
which Lin et al.'! predict to occur at 14.0 nm at 300 K for

nanowires oriented in the [0112] direction. Nanowires below
the SM-SC transition diameter are semiconducting, as all the
electron states in the T point valence band become filled, and
so an electron from the L point valence band cannot be ex-
cited to a state near the T point band edge. Hence, the optical
absorption from the L-T transition in undoped semiconduct-
ing nanowires is quenched. There are several possible expla-
nations for the observation of the L-T transition in the
~10 nm wires:

(1) The SM-SC transition could actually occur at

<10 nm in [0112]-oriented nanowires. This is unlikely be-
cause it would require a large correction to the known values
of the effective masses at room temperature. Although these
values are not well characterized, a large inaccuracy is
unlikely.

(2) The samples of Reppert et al.> could be doped so as to
lower the Fermi energy and open electron-accepting states at
the T point. This doping could occur by unintentional impu-
rities in the bismuth nanowires or by band bending at the
surface of the nanowire. In their paper, Reppert ef al.> men-
tion the results of Huber et al.,'3> who propose that evanes-
cent surface states may dominate the electronic properties of
bismuth nanostructures, as a result of which the carrier den-
sity is increased and the nanowire is effectively doped (it still
is a semiconductor but the Fermi energy crosses the band
edge).

(3) A third possible explanation relies on the fact that the
nanorods of Reppert et al.? are distributed about 10 nm but
do not all have this diameter value. As shown in Fig. 7, about
one in four of their nanowires actually have diameters
>14 nm. It is possible that the peak associated with the L-T
transition is only seen from these larger-diameter nanowires.
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III. EXPERIMENTAL RESULTS

In order to verify that the differences between the infrared
spectra of the [0112]-oriented nanowires (Black e al.! and

Reppert et al.?) and of the [1120]-oriented nanowires (Cor-
nelius et al.*) are physical and not experimental in nature, it
was necessary to measure the spectra of samples from all
three groups on the same experimental apparatus.

To perform our Fourier transform infrared (FTIR) mea-
surements, we used a Nicolet Magna-IR 860 Fourier trans-
form infrared spectrometer and a Nic-Plan IR Microscope
with a 1.5 mm aperture. Data were taken in the range of
600—4000 cm™! at 300 K, with a resolution of 2 cm™. The
microscope stage on which the samples rested was not
evacuated, and remained at room pressure. We note that, al-
though the light incident on the sample is mostly normal to
the plane of the sample, some of the light is incident at an
angle. Nicolet reports that this angle can vary from 0°-40°.
For each set of samples, we first describe the fabrication
details, and then our experimental results.

The Bi nanowire samples of Black et al.' were prepared
by template-assisted synthesis. First, anodic alumina tem-
plates were produced by anodizing pure Al in acid. Under
carefully chosen conditions, a regular array of parallel and
nearly hexagonal channels formed on the resulting oxide
film. The channel diameter and length could be controlled by
varying the anodization voltage and the acid etch time, re-
spectively. The channels were then filled by high-pressure
injection of liquid bismuth. Finally, the alumina template was
etched away, leaving an array of free-standing bismuth nano-
wires. The resulting nanowires possess a high degree of crys-
tallinity, and x-ray diffraction (XRD) measurements show a

dominant crystal orientation along the [0112] axis.

It must be noted that the etching of the alumina template
leaves a significant bismuth oxide coating on the nanowires.
For example, the “45 nm” diameter nanowires actually had a
diameter of 60 nm inside the alumina template but Black e
al.' measured a ~7 nm thick coating of bismuth oxide
around the Bi crystal core in free-standing wires by scanning
electron microscopy and hence estimated the diameter of the
bismuth core to be ~45 nm.

Figure 8 shows a spectrum from one of Black et al.’s!
nanowires in the reflection mode, where we have used a
polished gold mirror as the background. We see that there is
a large dip in reflectance in the vicinity of ~1000 cm™,
which is not observed in bulk bismuth and corresponds to the
L-T transition.

Reppert et al.? used an approach based on the pulse laser
vaporization method to produce their samples. A Nd:yttrium
aluminum garnet laser was used to ablate a rotating target of
Bi powder (99.5%) and an Au catalyst. A continuous flow of
argon and hydrogen gas caused the ablated material to flow
downstream and collect on a water-cooled cold finger, where
the Au particles served as a seed for the nanowire growth.
After the reaction, the apparatus was cooled down to room
temperature, and the ablated material was collected from the
cold finger. The resulting deposit consisted predominantly of
bismuth nanorods (short nanowires) with an average length
of ~200 nm dispersed among spherical Bi nanoparticles and
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FIG. 8. (Color online) IR reflectance spectrum of one of Black
et al.’s (Ref. 1) nanowire samples in alumina.

flat sheets of bismuth oxide. 3 mg of the nanorod deposit was
then mixed with 50 mg of KBr powder, and the resulting
mixture was pressed into a pellet 5 mm in diameter.

The nanorods contained a crystalline bismuth core encap-
sulated in a ~2 nm layer of Bi,O3. The predominant nano-

rod diameter was 10 nm, and XRD analysis showed a [0112]
nanorod growth direction. Moreover, the lattice spacing of
the planes oriented along the length of the nanorods was

found to be 0.328 nm, which is consistent with the [0112]
growth direction.

In Fig. 9 we have a transmission spectrum from the nano-
wire pellet of Reppert et al.? The peaks at 1393 and
1460 cm™' are clearly visible, confirming that this feature is
physical, and not related to differences in the experimental
setup. The additional peak at ~850 cm™' was observed by
Reppert et al.? as well, and its origin is unclear.
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FIG. 9. (Color online) IR spectrum of the KBr pellet containing
the nanorods of Reppert et al. (Ref. 2). Unlike the absorbance spec-
trum in Fig. 2, this spectrum is taken in the transmittance mode. To
compare the two, note that T(w)=1-A(w).
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FIG. 10. (Color online) IR reflectance spectra of 100 and 40 nm
Cornelius et al. (Ref. 4) samples. The reflectances of the 40 (top,
blue) and the 100 nm samples (bottom, green) are shown on the left
and right y axes, respectively.

Finally, the samples of Cornelius e al.* were created by
irradiating polycarbonate foils with energetic heavy ions.
The latent ion tracks were subsequently etched in NaOH, and
the diameter of the resulting pores was controlled by the
etching time. In the next step, a conductive electrode was
deposited on one side of the polycarbonate membrane, and
nanowires were grown electrochemically inside the pores.

These nanowires were highly oriented along the [1120] di-
rection, as shown by transmission electron microscopy,
XRD, and electron-diffraction measurements, and possessed
a high degree of crystalline order. The membrane was then
dissolved in dimethylformamide, and the wires were de-
tached from the electrode by means of ultrasound. Several
drops of the resulting solvent-nanowire suspension were put
on a silicon wafer. The solvent completely evaporates at
room temperature, leaving behind the nanowires.

For their FTIR measurements, Cornelius et al.* selected
single nanowires by means of an aperture and took infrared
transmission spectra, using as a reference nearby areas on the
wafer without any nanowires. They did not notice any large
absorption peaks in the 1000—1500 cm™! range.

Figure 10 shows reflectance spectra we obtained from the
40 and 100 nm samples of Cornelius et al.,* mounted on
silicon wafers. Since the resolution of our aperture was 1.5
mm, we could not select individual nanowires as they did,
but instead measured spectra of an area containing the nano-
wires. We used a polished gold mirror as our background
instead of a nanowire-free area of the wafer as they had
done. However, the background spectra we measured from
the gold mirror and from the silicon background looked very
similar, so this difference cannot account for any qualitative
differences between their spectra and ours.

It is difficult to extract quantitative features from these
two spectra due to the large aperture spot size and the irregu-
larity of the bismuth nanowire suspension droplet on the wa-
fer surface. Nonetheless, we see that there are no large ab-
sorption features in the 1000—1500 c¢m™' range, and we note
an overall decrease in reflectance for frequencies larger than
2000 cm™'. Thus, our results confirm that the L-T transition

peaks visible in [0112]-oriented nanowires are absent in
[1120]-oriented nanowires.
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IV. COUPLING AT THE INTERFACE

The explanation we propose to account for the unexpect-
edly high intensity of the optical absorption from the indirect

L-T transition in [0112]-oriented nanowires relates to the
symmetry lowering, and thus to the breakdown of symmetry
selection rules, of these bismuth nanowires. For electrons
traveling in the direction perpendicular to the wire axis, the
assumption of a periodic potential is no longer valid. Mo-
mentum is no longer a good quantum number, and states
which in the bulk are orthogonal, now overlap partially. This
allows for coupling between states which in the bulk are
associated with different points in the Brillouin zone. Be-
cause of the coupling between these states in the nanostruc-
ture, the corresponding indirect electronic transitions would
not require phonons for momentum conservation. The mo-
mentum change in the nanostructure is instead transferred to
the boundary (the truncation of the lattice).

Classically speaking, this is similar to throwing a ball at
an angle toward a wall. When the ball bounces off the wall,
it goes in a different direction. If the wire boundary is in
exactly the right direction, a ball thrown in the L point di-
rection will bounce off in the T point direction. Therefore,
near the surface the two directions can be coupled through
the interface.

In order for the L and T points to couple, one part of the
wall at the boundary of the wire needs to be oriented in the
correct direction to couple one of the L points with the T
point. Given a nanowire orientation, the question now be-
comes: how does one test if such a coupling exists?

In Cartesian (x,y,z) coordinates, the T point direction has
coordinates [0,0,1], and the three L point directions L(A),
L(B), and L(C) have coordinates [0,0.833,0.553], [-0.722,
-0.417,0.553], and [0.722,-0.417,0.553], respectively'? (in
this paper, we have normalized the lengths of all relevant
Brillouin-zone directions to one for convenience). Let the
orientation of a nanowire under consideration be [a,b,c] in
Cartesian coordinates (for the wires we are interested in,

[0112] and [1120] are [-0.774,0.223,0.593] and
[-0.756,0.655,0] in Cartesian coordinates, respectively!?).

If this nanowire has a surface that couples, say, the L(A)
direction with the T direction [in other words, an electron
traveling in the L(A) direction can bounce off the surface and
end up traveling in the T direction], then the vector between
these two directions, [L(A)-T], will be normal to this sur-
face, assuming that the angle of incidence equals the angle of
reflection. Now, if the nanowire does, in fact, have a surface
with a normal vector [L(A)-T], then the nanowire axis
[a,b,c] will be orthogonal to this vector; in other words, the
dot product of [a,b,c] with the [L(A)-T] vector will be
Zero.

Thus, to check if a nanowire of orientation [a,b,c] has a
surface that couples one of the L points to the T point (or the
negative T point), it is necessary to compute the six dot
products [L(A)-T]-[a,b,c], [L(B)-T]-[a,b,c], [L(C)
-T][a,b,c], [L(A)+T]-[a,b,c], [L(B)+T]-[a,b,c], and
[L(C)+T][a,b,c]. (By the inversion symmetry of the lat-
tice, the negative T point is also a valid T point, and the
negative L points are valid L points). If any of these six dot
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TABLE II. Coupling between the L and T points for nanowires
of different orientations. Each data point was calculated by first
finding the vector between the two points indicated at the beginning
of the row, then normalizing this vector, and finally taking the dot
product of this normalized vector with the wire orientation vector.
All calculations are done in Cartesian coordinates. Note that the
entry in bold face is closest to zero.

Wire axis [0112] [1120] [1011] [0001]
L(A),T -0.084 0.577 0.473 —0.473
L(B),T 0.212 0.288 -0.629 —0.473
L(C),T -0.969 -0.865 -0.629 —0.473
L(A),-T 0.628 0.310 0.881 0.881
L(B),-T 0.787 0.155 0.290 0.881
L(C),-T 0.153 -0.464 0.290 0.881

products are zero (or sufficiently close to zero), then this
nanowire has a wall in the correct direction to couple an L
point to a T point and optical absorption should be observ-
able for nanowires but not for bulk samples.

In Table II below, we have computed these dot products
(after normalizing the six [L = T] vectors) for nanowires of
various orientations. Note that the Cartesian coordinates of

[1011] and [0001] wires are [0,0.833,0.553] and [0,0,1],
respectively.!?
One can see from Table II that the term closest to zero is

found for the L(A) direction in [0112]-oriented nanowires,
with a dot product value of —0.084. We expect states near the
L point to couple with states near the T point, but since this
number is not exactly zero, these states will not be right at
the zone-boundary edge.

In order for an electronic transition to occur, a free state
needs to be present at the T point. Since the Fermi energy is
near the top of the valence band at the T point (42 meV in
bulk bismuth® and less in nanowires due to quantum confine-
ment), states farther away from the T point will be filled. A
larger value in Table II indicates coupling farther away from
the high-symmetry L and T points, and we expect weaker
electronic transitions with dot products of increasing magni-
tude. This provides a plausible explanation for the fact that

the L-T transition is expected in [0112]-oriented nanowires
but not in nanowires of the other three common orientations
(where the coupling may be too weak, or the T point elec-
tronic states filled), and also not in bulk bismuth.

Since the nanowires appear increasingly bulklike with in-
creasing diameter, we expect this effect to be most pro-
nounced for small diameter nanowires. However, it is inter-
esting to consider the relevant length scales of the process.
Since we are not dealing with a quantum confinement effect,
the de Broglie wavelength is unlikely to be the length scale
of importance. Furthermore, an electron traveling very far
from the wire boundary should not experience the effects of
the wire boundary, as it will scatter long before reaching it.

PHYSICAL REVIEW B 79, 165117 (2009)

The average distance that a carrier travels before undergoing
a large-angle scattering event is the mean-free path, and so
we expect that the relevant length scale is the mean-free path
of bismuth. V. CONCLUSIONS

We have calculated the energy difference between the L
and T point valence-band edges as a function of nanowire
diameter and crystalline orientation, and compared this result
with the absorption features in previously published data,
which are attributed to this electronic transition. Our simple
infinite potential square-well model gives a good fit to the
experimental data when nonparabolic dispersion relations are
used at the L point, and leads us to conclude that the nonpa-
rabolicity of the L point energy bands is a key factor in
interpreting optical effects in bismuth nanowires.

The in-plane effective-mass value, which we determined
from the nanowire crystalline orientation and from the
effective-mass tensor for each band, is set as a fitting param-
eter in our model. The best fit to the data occurs for m;
=0.011m,, our smallest calculated in-plane effective mass.
Since the smallest in-plane effective mass will have the larg-
est effective mass in the direction of the wire axis and there-
fore in the transport direction, it is expected to have the
largest joint density of states and to contribute the most to
optical absorption.

By repeating measurements of three different groups on
the same experimental setup, we have demonstrated that the
previously observed differences between the infrared spectra

of Bi nanowires oriented in the [0112] and [1120] directions
are physical in nature, and were not caused by differences in
experimental setup. We therefore conclude that the differ-
ences in the optical properties of the nanowires from the
different groups are partly the result of the different crystal-
line orientations of their nanowires. We present a simple ana-
lytical model of the indirect L-T valence to valence band
electronic transition and explain why this electronic transi-
tion could be the dominant optical property in nanowires of
some crystalline orientations but is not observable in nano-
wires of other crystalline orientations. This model accounts
for the differences between the optical data for the three
different groups, and demonstrates the essential physics of
this transition without the need for numerical simulation. In-
creasingly accurate measurements of the relevant bulk band
parameters of bismuth are expected to increase the accuracy
of our models. Future theoretical study of this L-T transition
may elucidate the dependence of the energy of this transition
on temperature and on doping.
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